
Anderson localization [1] was discovered 50 years ago in
disordered crystals as an accumulation of single-particle elec-
tronic wave functions and can be interpreted as an interference
effect between multiple scatterings of the electron by random
defects of the potential. As a consequence eigenstates are
no longer spatially extended but are exponentially localized.
Anderson localization is a universal phenomenon of wave
physics, unrestricted to quantum mechanics. Experimental
observations were made in noninteracting Bose-Einstein con-
densates (BEC) expanding in random optical potentials [2,3],
light propagation in spatially random nonlinear optical media
localization will therefore stay localized as time evolves. Non-
linearity will usually destroy the integrability of a system and
induce mode-mode interactions. It was observed numerically
that wave packets in such nonlinear disordered wave equations
delocalize in time without respecting Anderson localization
limits [7–11]. Thus, there are several intriguing questions
which have attracted much attention during the last few years:
(i) Will Anderson localization be destroyed by arbitrary small
strength of nonlinearity or is there a threshold below which
the localization is restored? (ii) Will wave packet spreading, if
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observed, last forever or will it stop at certain (though probably
very large) time? (iii) Is the shape of the initial wave packet
crucial for the details of spreading? We will mainly address
question (ii) here.

Johansson et al. [12] conjectured that spreading must
eventually stop and dynamics will become close to regular,
assuming that in these limits the Kolmogorov-Arnold-Moser
(KAM) theorem is applicable, i.e., that for small wave density
regular nonergodic phase space structures predominate and the
dynamics develops along KAM tori. Other attempts consist in
a numerical scaling analysis, in order to predict and extend
results beyond computational ability [13]. Analytical studies
perform perturbation theory to higher order by treating the
strength of nonlinearity as a small parameter [14], conflicting
with the explosive growth of secular terms in higher orders
of perturbation theory. This theory states that for the disor-
dered discrete nonlinear Schrödinger model with nonlinearity
irrespective of the strength of disorder; therefore it is reflecting
the properties of a strongly nonlinear lattice wave equation,
rather than peculiarities of waves propagating in disordered
media. Also the self-trapping theorem crucially depends on
the presence of at least two integrals of motion, and it fails
for most nonlinear wave equations with only one integral of
motion.

In Ref. [9] the observed wave packet spreading was
assumed to be due to an incoherent excitation of the wave
packet exterior, induced by the chaotic dynamics of the
wave packet interior. The number of resonant modes in the
packet was estimated by considering quadruplet and triplet
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mode-mode interactions [17]. A generalization to higher di-
mensionsD and different nonlinearity powers was performed.
This led to a quantitative prediction for the subdiffusive
wave packet spreading characteristic� [9]. Its validity was
conÞrmed numerically in [9,15,18]. Recently, it has been pre-
dicted theoretically [19,20] and veriÞed numerically [19] that
a potentially long-lasting strong chaos regime induces faster
(though still subdiffusive) spreading, which is followed by
the asymptotic and slower weak chaos subdiffusive spreading.
Notably, published numerical data did not reveal a further
slowing down of spreading, when starting from the weak chaos
regime.

In this paper we present results of extensive numerical
studies of wave packet spreading in various models of
disordered nonlinear one-dimensional lattices. In particular,
we consider different initial excitations and scan the parameter
space of disorder strength and nonlinearity over a wide region.
The main aim is to test the applicability of previously derived
spreading laws and to search for indications of a continuation
of the weak chaos spreading, or for indications of a slowing
down, as conjectured by others.

II. MODELS

A. Discrete nonlinear Schr̈odinger and Klein-Gordon chains

In our study we consider various one-dimensional lattice
models. The Þrst one is the disordered discrete nonlinear
Schr¬odinger equation (DNLS) described by the Hamiltonian
function

H D =
�

l

� l |� l |2 +
�
2

|� l |4 Š (� l+ 1� �
l + � �

l+ 1� l ), (1)

in which� l are complex variables,l are the lattice site indices,
and � � 0 is the nonlinearity strength. The random on-site
energies� l are chosen uniformly from the interval [Š W

2 , W
2 ],

with W denoting the disorder strength. The equations of
motion are generated byú� l = � H D /� (i� �

l ):

i ú� l = � l � l + � |� l |2� l Š � l+ 1 Š � lŠ1. (2)

This set of equations conserves both the energy of Eq. (1) and
the normS =

�
l |� l |2.

The second model we consider is the quartic Klein-Gordon
(KG) lattice, given as

H K =
�

l

p2
l

2
+

÷� l

2
u2

l +
1
4

u4
l +

1
2W

(ul+ 1 Š ul )2, (3)

whereul andpl are, respectively, the generalized coordinates
and momenta on sitel , and ÷� l are chosen uniformly from the
interval [12, 3

2]. The equations of motion are¬ul = Š � H K /�u l
and yield

¬ul = Š ÷� l ul Š u3
l +

1
W

(ul+ 1 + ulŠ1 Š 2ul ). (4)

This set of equations only conserves the energy of Eq. (3).
The scalar measure of energy resulting from Eq. (3) we shall
henceforth label asH . This scalar valueH � 0 serves as a
control parameter of nonlinearity, similar to� for the DNLS
case.

For � = 0 and� l = Al exp(Ši�t ), Eq. (2) reduces to the
linear eigenvalue problem

�A l = � l Al Š AlŠ1 Š Al+ 1. (5)

The normalized eigenvectorsA	,l (
�

l A2
	,l = 1) are the

corresponding normal modes (NMs), and the eigenvalues
� 	 are the frequencies of these NMs. The width of the
eigenfrequency spectrum� 	 in Eq. (5) is 
 D = W + 4 with
� 	 � [Š2 Š W

2 ,2 + W
2 ]. The coefÞcient 1/ (2W) in Eq. (3) was

chosen so that the linear parts of the Hamiltonians Eqs. (1) and
(3) would correspond to the same eigenvalue problem. In the
limit H � 0 (in practice by neglecting the nonlinear term
u4

l / 4) the KG model of Eq. (3)Ñwith ul = Al exp(i�t )Ñis
reduced to the same linear eigenvalue problem of Eq. (5), under
the substitutions� = W� 2 Š W Š 2 and� l = W(÷� l Š 1). The
width of the squared frequency� 2

	 spectrum is
 K = 1 + 4
W

with � 2
	 � [ 1

2, 3
2 + 4

W ]. Note that
 D = W
 K . As in the case
of DNLS, W determines the disorder strength.

The asymptotic spatial decay of an eigenvector is given
by A	,l � eŠl/� (� 	 ), where� (� 	 ) is the localization length. In
the case of weak disorder,W � 0, the localization length
is approximated [17,21] as� (� 	 ) � � (0) � 100/W 2. The NM
participation numberp	 = 1/

�
l A4

	,l characterizes the spatial
extend of the NM. An average measure of this extent is the
localization volumeV, which is of the order of 3.3� (0) �
330/W 2 for weak disorder and unity in the limit of strong
disorder,W � � [17]. The average spacing of eigenvalues
of NMs within the range of a localization volume is then
d � 
/V , with 
 being the spectrum width. The two
frequency scalesd � 
 determine the packet evolution details
in the presence of nonlinearity.

In order to write the equations of motion of Hamiltonian
(1) in the normal mode space of the system we insert� l =�

	 A	,l  	 in (2), with | 	 |2 denoting the time-dependent
amplitude of the	 th NM. Then, using Eq. (5) and the
orthogonality of NMs the equations of motion (2) read

i ú 	 = � 	  	 + �
�

	 1,	 2,	 3

I 	,	 1,	 2,	 3
�
	 1

 	 2 	 3 (6)

with the overlap integral

I 	,	 1,	 2,	 3 =
�

l

A	,l A	 1,l A	 2,l A	 3,l . (7)

The frequency shift of a single-site oscillator induced by
the nonlinearity is� l = � |� l |2 for the DNLS model. The
squared frequency shift of a single-site oscillator induced
by the nonlinearity for the KG system is� l = (3El )/ (2÷� l ),
with El being the energy of the oscillator. Since all NMs are
exponentially localized in space, each effectively couples to a
Þnite number of neighbor modes. The nonlinear interactions
are thus of Þnite range; however, the strength of this coupling
is proportional to the norm (energy) density for the DNLS
(KG) model. If the packet spreads far enough, we can
generally deÞne two norm (energy) densities: one in real
space,nl = | � l |2 (El ), and the other in NM space,n	 = |  	 |2

(E	 ). By averaging over realizations, no strong difference is
seen between the two, and therefore we treat them generally
as some characteristic norm (n) or energy (E) density. The
frequency shift due to nonlinearity is then� D � �n for the
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5. LNL and NLN models

In Fig. 7 we present results for the KG, LNL, and NLN
models for W = 4, L = 21, and E = 0.02. For comparison we
also include the results for the KG model (3) (magenta curves)
with E = 0.02, for which subdiffusive spreading in the weak
chaos regime is observed. The NLN KG model (green curves
in Fig. 7) exhibits a similar behavior, since both the second
moment [Fig. 7(a)] and the participation number [Fig. 7(b)]
start to grow after some detrapping time td � 105. This time
is larger than the detrapping time of the KG model (td � 104),
because a wave packet in the NLN KG model initially evolves
in an almost linear system and only after some large time,
when it has spread significantly to the nonlinear part of the
lattice, does spreading takes on characteristics of the purely
nonlinear model.

On the other hand the evolution of all quantities of Fig. 7
for the LNL KG system (red curves) follows the KG model
until t � 104, because initially the wave packets evolve in the
same nonlinear system. Later on the wave packet enters the L
(linear) parts of the system. Thus, spreading starts to retard, and
both � log10 m2(t)� [Fig. 7(a)] and � log10 P (t)� [Fig. 7(b)] show
a characteristic slowing down in the exponents αm [Fig. 7(d)]
and αP [Fig. 7(e)]. In addition, �SV � [Fig. 7(f)] saturates at
finite nonzero values, indicating that wave packets tend to
localize again. For all three KG models, the values of �ζ �
[Fig. 7(c)] show that wave packets do not become sparse and
inhomogeneous in the course of time. We obtained similar
results for the LNL and NLN DNLS models for W = 4, L =
21, and β = 0.04.

Thus, spreading is also observed for the LNL and NLN
models, and only in the case of the LNL models have we
observed a slowing down of the spreading, as expected.

IV. SUMMARY AND CONCLUSIONS

We considered several models of disordered nonlinear
one-dimensional lattices and performed extensive numerical
simulations of norm (energy) propagations. Since we focused
on the dynamical spreading of fronts, we prepared initial block
wave packet profiles, having widths equal to or larger than the
average localization volume defined by the linear problem. We
would expect similar behaviors for initial Gaussian profiles
(although calculations were not performed), again where the
width (for Gaussians, say the standard deviation) is on par with
the average localization volume.

We carefully studied statistical properties of the dynamics,
by varying the values of disorder and nonlinearity strengths
over a wide interval, and by averaging results over many
disorder realizations. Our results agree quite well with our
theoretical expectations for the existence of the weak and
strong chaos regimes.

The main outcome of our study is that in the presence
of nonlinearities we always observe subdiffusive spreading, so
that the second moment grows initially as m2 � tα with α < 1,
showing signs of a crossover to the asymptotic m2 � t1/3 law
at larger times. Remarkably, subdiffusive spreading is also
observed for large disorder strengths, when the localization
volume (which defines the number of interacting partner
modes) tends to one. Fröhlich-Spencer-Wayne models, which

take the disorder strength to its infinite limits, are also
showing subdiffusive growth. Most remarkably, in none of
our studies (except the artificial LNL case) did we encounter a
slowing down of spreading beyond the limits set by the weak
chaos predictions. Therefore, our numerical data support the
conjecture that the wave packets, once they spread, will do so
up to infinite times in a subdiffusive way, bypassing Anderson
localization of the linear wave equations.

The only cases where spreading shows a tendency to stop
are the LNL models, for which nonlinearities are absent
everywhere except inside a finite-size central region where the
initial wave packet is launched. In these models, when wave
packets have spread substantially, their chaotic component
in the central region of the lattice becomes weak, and
distant normal modes in the linear parts of the system are
exponentially weakly coupled to the central nonlinear region.

When the nonlinearity strength tends to smaller values,
waiting (detrapping) times for wave packet spreading of
compact initial excitations increase beyond the detection
capabilities of our computational tools. The corresponding
question of whether a KAM regime can be entered at finite
nonlinearity strength was addressed in [12] and is analyzed in
detail in a forthcoming work [29].
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APPENDIX: SYMPLECTIC INTEGRATION
OF THE DNLS EQUATIONS

We discuss a novel method which we designed to integrate
the DNLS equations locally, which we shall call the ‘PQ’
method. Previously used methods employ a transformation of
the wave function from real into Fourier space and back, at
each integration step. These transformations induce small but
observable corrections in the tails of the wave packet, which
slowly but steadily grow in time. In such a case we will have
to stop the integration once this noisy background reaches
a substantial level. The PQ method avoids the generation
of this background by simply not performing the Fourier
transformation. Instead the PQ method integrates the DNLS
equations in real space.

The canonical transformation

ψl =
1



2

(ql + ipl) (A1)

of the complex variable ψl in Eq. (1) transforms (1) into

H D=
�

l

εl

2
�
q2

l + p2
l
�
+

β
8

�
q2

l + p2
l
� 2

Š (ql+ 1ql+ pl+ 1pl), (A2)

where ql and pl are generalized coordinates and momenta,
respectively.

If a Hamiltonian function can be split into two integrable
parts, then a symplectic integration scheme can be used for the
integration of its equations of motion. One possible splitting
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